Degrees of Freedom in Distillation

To perform a simulation of a distillation column, a set of specifications needs to be provided. To do this, one needs to understand the concept of degree of freedom. This is defined as

Consider a column with N_T trays and N_C components, total condenser and total reboiler (Figure 2-1). In the case of crude, one can consider the components to be the pseudo-components that are usually generated.

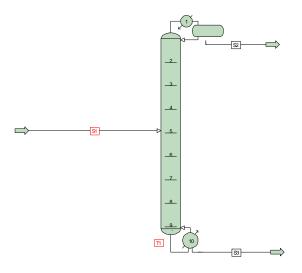


Figure 2-1: Single one-feed two product column with reboiler and condenser

VARIABLES

1) For each tray (excluding condenser and reboiler):

T_j , L_j , V_j , $x_{j,i}$, $y_{j,i}$	Variables= $3 N_T + 2 N_T N_C$
L= Liquid rates	V= Vapor rates
x= liquid compositions	y=vapor compositions
T = Tray temperatures	

2) For the condenser (temperature, flows, compositions and duty)

 T_C , L_0 , D, $x_{C,i}$, Q_C Variables= N_C +4

D= Product Rate

 Q_C = Condenser heat duty

3) For the reboiler (temperature, flows, compositions and duty)

 T_R , V_{NT+1} , B, x_{Ri} , Q_R Variables= N_C +4

B= Product Rate Q_R = Condenser heat duty

Total number of Variables: NT(3+2NC)+8+2NC

EQUATIONS:

1) Steady state mass balances for all components in all trays

 $L_{j-1} x_{j-1,i} - [L_j x_{j,i} + V_j y_{j,i}] + V_{j+1} y_{j+1,i} + F_j z_i = 0 \qquad i = 1,..., N_C \quad j = 1,..., N_T$ Equations: $N_C N_T$

z= feed composition F_j = Feed rate to tray j (here we consider only one).

2) Steady state mass balances for all components the condenser

$y_{1,i} = x_{Ci}$	<i>i</i> =1,, <i>Nc</i>	Equations: N _C
$V_1 - (L_0 + D) = 0$		Equations: 1

3) Steady state mass balances for all components the Reboiler

 $y_{NT+1,i} = x_{Ri} \qquad i = 1,..,N_C \qquad \text{Equations: } N_C$ $L_{NT} - (V_{NT+1} + B) = 0 \qquad \text{Equations: } 1$

4) Equilibrium Relations

 $y_{j,i}=K_{j,i,i}(x_j, T_j, P_j)x_{j,i}$ $i=1,...,N_C$ $j=1,...,N_T$ Equations: N_TN_C

 P_j = pressures (assumed given)

5) Summation equations

$$\sum_{i=1}^{N_{C}} x_{j,i} = 1 \qquad j = 1,..., N_{T}$$

$$\sum_{i=1}^{N_{C}} x_{C,i} = 1 \qquad (Condenser)$$

$$\sum_{i=1}^{N_{C}} y_{j,i} = 1 \qquad j = 1,..., N_{T}$$

$$\sum_{i=1}^{N_C} y_{NT+1,i} = 1$$
 (Reboiler)

Equations: 1

6) Enthalpy balance in each tray

 $L_{j-1} h_{j-1} - [L_j h_j + V_j H_j] + V_{j+1}H_{j+1} + F_j H_{F,j} = 0$ $j=1,...,N_T$

i=1

h: liquid enthalpyH: Vapor enthalpy H_F : Enthalpy of feedAll enthalpies are functions of composition and temperature.

7) Enthalpy balance in condenser and reboiler

 $V_{l} H_{l} - (L_{0} + D) h_{0} = Q_{C}$ Equations: 1

 $(L_{NT}-B)h_{NT}-V_{NT+1}H_{NT+1}=Q_R$

<u>Total number of equations</u>: $N_T(3+2N_C)+2N_C+6$

Degree of Freedom: Unknowns- Equations = 2

Consider now the case of a column with a total condenser and steam injection, like the one in Figure 2-2.

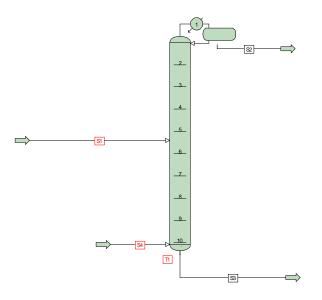


Figure 2-2: Single one-feed two product column with reboiler and condenser

Since there is no reboiler, there is N_C+4 variables less $(T_R, V_{N+1}, x_{Ri}, B \text{ and } Q_R)$. Therefore,

<u>Total number of equations</u>: $N_T(3+2N_C)+N_C+4$

The number of equations is reduced by N_C +3 (N_C +1 material balances, one summation of compositions, one energy balance. Thus,

Total number of equations: N_T(3+2N_C)+ N_C+3

Degree of Freedom: Unknowns- Equations = 1